Supporting Material: Virtual Tools

Search
Activity Authors
Activity Circles
Click To Sort By
Grade
Audience
  • 6th - 8th (1)
  • 9th - 12th (1)
  • College Level (1)
  • For Teachers (1)
Topics
Topics
  • Geometry (1)
  • Problem Solving / General (1)
Supporting Materials
Supporting Materials
  • Facilitator Guides (1)
Session Styles
Session Styles
  • Problem Posing (1)
Mathematical Practices
Mathematical Practices
  • MP1 - Make sense of problems and persevere in solving them. (1)
  • MP3 - Construct viable arguments and critique others' reasoning. (1)
  • MP4 - Model with mathematics. (1)
  • MP5 - Use appropriate tools strategically. (1)
  • MP6 - Attend to precision. (1)
  • MP7 - Look for and make use of structure. (1)
  • MP8 - Look for and express regularity in repeated reasoning. (1)

Hungry for Change: Food Deserts in CT

By:


In this lesson, we are tasked with determining a location for a new supermarket to address a possible “food desert” problem in Glastonbury. You will use these diagram to guide your analysis along with tools in Desmos and Geogebra. To qualify as “low access” in urban areas, at least 500 people or 33% of the population must live more than 1 mile from the nearest large grocery store. In rural areas, at least 500 people or 33% of the population must live more than 10 miles from the nearest large grocery store.

Racial Profiling

By:


To investigate situations in the real world, we sometimes create a mathematical model. A mathematical model is a simplified version of the real world that allows us to understand the real world a little better. Over time we can change this model so that it gets closer and closer to the real world. Today we are going to create a mathematical model that represents a police officer pulling over a car randomly to try and gain an understanding of a police officer conducting a traffic stop. Our essential question is “Do police officers disproportionately pull over Black, Hispanic, or minority...

Making Connections Between Forms of Quadratic Equations

By:


Developed as part of the Math Circles of Inquiry project, the goal of this module is to help students in Algebra II become fluent in the various forms of a parabola equation based on the information that they are given. Students sometimes fail to understand that there are multiple ways to find an equation of a parabola. This module incorporates multiple activities both in the learning packet and using Desmos activities online to encourage students to discover and practice writing equations of parabolas in their various forms. At the end of this activity students will work more efficiently with equations...

Pick’s Theorem

By:


Austrian mathematician Georg Pick first stated this theorem in 1899. However it wasn’t brought to broad attention until 1969. In this exploration, participants will use rates of change to aid them in discovering Pick’s famous formula by finding a relationship between the area of the figure, the number of perimeter pegs, and the number of interior pegs.

This session is also suitable for student circles or the classroom.

Intergenerational Wealth

By:


Students will gather data on median household incomes from three towns across Connecticut (including their own town) and will calculate potential future wealth using exponential modeling. Students will compare outcomes of these models and discover factors that impact a household’s ability to accumulate and transfer wealth. Students will understand the complexity and interconnectivity of social issues. Note that this lesson is closer to a 1-week mini-unit, but that teachers may choose certain sections to focus on for a smaller 1-2 day exploration.

Animated Activities

By:


In this session, we introduce participants to the programming language, Scratch, by giving them a rich task. As they explore possible approaches to achieving the goals of the task, they naturally uncover the three fundamental structures of programming (conditionals, loops, and sequential statements). We explore multiple approaches to the task, highlighting the creativity involved in programming, and even allow participants to declare their own variables to simplify coding work.

The Dollar Game

By:


A group of people, some that just met, have a dilemma. Some people owe money and some have money. Problem is that only people that know each other, connected by nodes, can give or lend a dollar. But they must give each person they know a dollar, even if that puts themselves in debt!! Find ways to give money in such a way so that everyone in the group has money or owes 0 dollars.