Supporting Material: Photos & Videos

Search
Activity Authors
Activity Circles
Click To Sort By
Grade
Audience
  • 1st - 2nd (9)
  • 3rd - 5th (27)
  • 6th - 8th (77)
  • 9th - 12th (81)
  • College Level (69)
  • For Teachers (78)
Topics
Topics
  • Geometry (35)
  • Mathematical Games (24)
  • Mathematical Modeling (10)
  • Number Theory (26)
  • Parity / Invariants (2)
  • Problem Solving / General (36)
  • Probability and Statistics (3)
  • Social Justice Mathematics (1)
  • Algebra / Arithmetic (32)
  • Combinatorics (32)
Supporting Materials
Supporting Materials
  • Facilitator Guides (87)
  • Handouts (31)
  • Lesson Plan (7)
  • Photos & Videos (24)
  • References (31)
  • Virtual Tools (13)
Session Styles
Session Styles
  • Manipulatives (30)
  • Multiple Representations (27)
  • Problem Posing (45)
  • Problem Sets (45)
  • Try a Smaller Problem (40)
  • Work Backwards (20)
  • Integrates Technology (13)
  • Kinesthetic Element (10)
Mathematical Practices
Mathematical Practices
  • MP1 - Make sense of problems and persevere in solving them. (82)
  • MP2 - Reason abstractly and quantitatively. (47)
  • MP3 - Construct viable arguments and critique others' reasoning. (56)
  • MP4 - Model with mathematics. (54)
  • MP5 - Use appropriate tools strategically. (39)
  • MP6 - Attend to precision. (36)
  • MP7 - Look for and make use of structure. (68)
  • MP8 - Look for and express regularity in repeated reasoning. (61)

Can Voting Ever Really Be “Fair”?

By:


What is “fair” when voting? In this session, the participants apply and analyze several established methods for determining the “voice” of the majority. They will discover these methods through an inquiry-based experience in a deep problem, and join an ongoing discussion that has gone on for hundreds of years about what is considered “fair voting.”

This session is also suitable for a high school student math circle or classroom.

The Dollar Game

By:


A group of people, some that just met, have a dilemma. Some people owe money and some have money. Problem is that only people that know each other, connected by nodes, can give or lend a dollar. But they must give each person they know a dollar, even if that puts themselves in debt!! Find ways to give money in such a way so that everyone in the group has money or owes 0 dollars.

Bicycle Math

By:


You are brought to a crime scene. You are told that a thief just made off with a bag full of diamonds, escaping on a bicycle. You come across a pair of bicycle tracks in the snow, no doubt made by the fleeing thief. But which way did the thief go? Just by looking at the shapes of the tracks, can you determine which way the thieving cyclist went: left to right or right to left?

Grid Power

By:


“When I grew up in the Soviet Union, all we used for math was grid paper. Grid paper leads to discovery.” This is how Tatiana Shubin, San Jose State University, begins her lesson demonstrating the myriad of wonderful math questions arising from a simple sheet of grid paper. Attempting to count all squares of any size on a limited grid will require participants to persevere, organize their thinking and construct viable arguments.

Folding Perfect Thirds

By:


Imagine you’re packing for a trip, and you’re planning on bringing your favorite tie. It’s too long to fit in your suitcase, even after folding it in half. You would fold it into fourths, but you don’t want all of those creases ruining your tie. You’ve decided folding it into thirds will be the perfect length to fit in your suitcase without noticeable creases on your tie. However, you don’t have a ruler or any means of making sure your tie is folded into perfect thirds. Is there anything you can do about this?

Factor Game

By:


A teacher challenges students to a game. The rules are explained as the game progresses. The player with the highest total wins! Students then play against each other. Afterwards, while analyzing the game, prime, composite, perfect, deficient, and abundant numbers are discovered and defined. Students again play the game using the strategies they determined.

In a professional development video, teachers focus on the topic of number systems and number theory using a game setting to investigate the properties of prime, composite, abundant, deficient, and perfect numbers. This video can be used in conjunction with The Factor Game lesson plan.

Flipping Pancakes

By:


The Pancake Problem, first posed in 1975, is a sorting problem with connections to computer science and DNA rearrangements, which leads to discussions of algorithms, sequences, and the usefulness of approximations and bounds.

The original problem was first posed by mathematician Jacob Goodman under the pen name “Harry Dweighter” (read it quickly) in 1975, and it has delighted math enthusiasts (including undergraduate Bill Gates) ever since!