# Session Style: Kinesthetic Element

Search
Activity Authors
Activity Circles
Click To Sort By
Audience
• 1st - 2nd (12)
• 3rd - 5th (30)
• 6th - 8th (83)
• 9th - 12th (85)
• College Level (72)
• For Teachers (81)
Topics
Topics
• Algebra / Arithmetic (33)
• Combinatorics (31)
• Geometry (36)
• Mathematical Games (26)
• Mathematical Modeling (15)
• Number Theory (25)
• Parity / Invariants (2)
• Probability and Statistics (3)
• Problem Solving / General (39)
• Social Justice Mathematics (5)
Supporting Materials
Supporting Materials
• Facilitator Guides (88)
• Featured in MCircular (25)
• Handouts (38)
• Lesson Plan (10)
• Photos & Videos (28)
• References (36)
• Virtual Tools (17)
Session Styles
Session Styles
• Work Backwards (21)
• Integrates Technology (17)
• Kinesthetic Element (11)
• Manipulatives (33)
• Multiple Representations (33)
• Problem Posing (45)
• Problem Sets (51)
• Try a Smaller Problem (40)
Mathematical Practices
Mathematical Practices
• MP1 - Make sense of problems and persevere in solving them. (83)
• MP2 - Reason abstractly and quantitatively. (53)
• MP3 - Construct viable arguments and critique others' reasoning. (58)
• MP4 - Model with mathematics. (58)
• MP5 - Use appropriate tools strategically. (40)
• MP6 - Attend to precision. (40)
• MP7 - Look for and make use of structure. (72)
• MP8 - Look for and express regularity in repeated reasoning. (61)

### Balance Beans

By:

Topic(s):

Supporting Resources:

If you start with some beans on a seesaw and you’re given certain additional beans to place on the seesaw, can you do it so the seesaw balances? In this activity, students start by trying to solve various challenges involving different arrangements of beans on the seesaw and then design...

### Systems of Linear Equations

By:

Topic(s):

Supporting Resources:

Developed as part of the Math Circles of Inquiry project, this short module explores a graphical solution to a system of equations. Students answer questions about lemonade sales and physically stand on the coordinates of a giant grid in order to see that plotting two equations on the same set...

### Locked Out: A Breakout Box Session for Your Circle

By:

Topic(s):

Supporting Resources:

Escape Rooms and “Bomb Disposal” activities are growing in popularity as a form of team building and entertainment. This session blends the two ideas to create a cooperative math activity where the challenge is to solve math problems whose solutions generate combinations to open a locked box. The math problems...

### Puzzles, Bands, and Knots

By:

Topic(s):

Supporting Resources:

This activity packed session starts with a fun Pythagorean Puzzle Proof. Then, Knot Theory is explored while experimenting with the Mobius Band, Knots and Links; Untangling Ropes and Rings, and acting out the Human Knot Experiment. These explorations are further connected to the coiling and knotting of DNA molecules. These...

### Shifting Gears: Approximations in Cycling

By:

Topic(s):

Supporting Resources:

After studying James Tanton’s MTC session about bicycle tracks, avid bicyclist Michael Nakamaye started questioning the mathematics behind how a bike works.

How do gears work? How many teeth are there usually on the different gears? Why? How is a bike like a ratio machine?

### The Futurama Theorem

By:

Topic(s):

Supporting Resources:

In the television show Futurama, Professor Farnsworth and Amy decide to try out their newly finished “Mind-Switcher” invention on themselves. When they try to switch back, they discover a key flaw in the machine’s design: it will not allow the same pair of bodies to be used in the machine...

### Art Meets Math: Escher’s Tilings

By:

Topic(s):

Supporting Resources:

Dutch artist M. C. Escher is well known for his amazing prints of interlocking lizards, fish transforming into birds, and angels and devils intertwined, just to name a few. His intricate tilings offer a beautiful and engaging way to explore ideas related to geometric transformations and symmetries.

### Bicycle Math

By:

Topic(s):

Supporting Resources:

You are brought to a crime scene. You are told that a thief just made off with a bag full of diamonds, escaping on a bicycle. You come across a pair of bicycle tracks in the snow, no doubt made by the fleeing thief. But which way did the thief...

### Acting Out Mathematics

By:

Topic(s):

Supporting Resources:

In teams, participants will create body movements related to geometry facts and will use their body to create a convincing argument as to why the statement is true. Please bring your fun-meter, your creativity, your body, and open physical space (for moving) to this session.

### Conway’s Rational Tangles

By:

Topic(s):

Supporting Resources:

What do adding positive and negative fractions have to do with tying knots? In this entertaining lesson, students will use ropes to explore and identify mathematical operations that untangle knots and lead to new thinking. Simple operations of twists and rotations circle back to practicing the addition of positive and...