Mathematical Practice: MP2 - Reason abstractly and quantitatively.

Search
Activity Authors
Activity Circles
Click To Sort By
Grade
Audience
  • 1st - 2nd (9)
  • 3rd - 5th (27)
  • 6th - 8th (77)
  • 9th - 12th (81)
  • College Level (69)
  • For Teachers (78)
Topics
Topics
  • Geometry (35)
  • Mathematical Games (24)
  • Mathematical Modeling (10)
  • Number Theory (26)
  • Parity / Invariants (2)
  • Problem Solving / General (36)
  • Probability and Statistics (3)
  • Social Justice Mathematics (1)
  • Algebra / Arithmetic (32)
  • Combinatorics (32)
Supporting Materials
Supporting Materials
  • Facilitator Guides (87)
  • Handouts (31)
  • Lesson Plan (7)
  • Photos & Videos (24)
  • References (31)
  • Virtual Tools (13)
Session Styles
Session Styles
  • Manipulatives (30)
  • Multiple Representations (27)
  • Problem Posing (45)
  • Problem Sets (45)
  • Try a Smaller Problem (40)
  • Work Backwards (20)
  • Integrates Technology (13)
  • Kinesthetic Element (10)
Mathematical Practices
Mathematical Practices
  • MP1 - Make sense of problems and persevere in solving them. (82)
  • MP2 - Reason abstractly and quantitatively. (47)
  • MP3 - Construct viable arguments and critique others' reasoning. (56)
  • MP4 - Model with mathematics. (54)
  • MP5 - Use appropriate tools strategically. (39)
  • MP6 - Attend to precision. (36)
  • MP7 - Look for and make use of structure. (68)
  • MP8 - Look for and express regularity in repeated reasoning. (61)

Percents

By:


Developed as part of the Math Circles of Inquiry project, this module has students grapple with different representations of percents in various contexts in order to solve real life problems. Students need fluency in percentages for real world applications such as shopping, eating at restaurants, commission based careers, etc. Understanding percent expressions in seventh grade is necessary to be able to create exponential functions in Algebra 1.

This module contains twelve activities to address the various fine points associated with percent standards.

Rational Numbers

By:


Developed as part of the Math Circles of Inquiry project, this module is an introductory activity for rational numbers, likely aligned with Grade 7. Students will be given five points on a number line and will be asked to estimate the values of each in a 3-part task and explain their reasoning. The activity is designed to have students then fluently add, subtract, multiply, and divide these rational numbers and justify the placement of their solutions on the number line.

Trigonometric Ratios in Right Triangles

By:


Developed as part of the Math Circles of Inquiry project, this five to six day activity is designed to help students understand trigonometric ratios, by building on their understanding of similar triangles and ratios of corresponding sides. The purpose of this module is for students to spend time and energy developing the reasons the sine, cosine and tangent ratios are effective tools for solving right triangles, by analyzing patterns that emerge when the trig table is compiled from class generated data, and to understand the numbers stored in their calculator before they start using it to problem solve. An optional...

Lockers: An Open-and-Shut Case

By:


A classic Math Circle problem! At a large high school, there are 10000 lockers. The lockers are numbered, in order, 1, 2, 3, . . . , 10000, and to start, each locker is closed. There are also 10000 students, also numbered 1, 2, 3, . . . , 10000. The students walk the length of the corridor, opening and closing lockers according to a set of rules. How many lockers remain open? Which lockers? What if the rules were slightly different? Can you manipulate the rules to obtain specific outcomes? This collection of nine locker problems is suitable for...

Mathematical Games

By:


This session includes 15 games using manipulatives or paper and pencil. The goal is to decide which one of the two players has a winning strategy. To solve a game means to find a winning, or a non-losing, strategy for one of the players. An answer must include a detailed description of such strategy, and you have to explain what the winning player should do so that this player wins regardless of his opponent’s moves.

These games may be presented as a single circle session, or individually in a circle or classroom.

One, Two, Three, Four: Building Numbers with Four Operations

By:


What numbers can you make with 1, 2, 3, and 4, using the operations of addition, subtraction, and multiplication? Work on these problems builds arithmetic fluency and provides opportunities to identify patterns, develop and defend arguments, and create conjectures. This investigation also highlights how thin the boundary is between a fun warm-up activity for fifth graders and deep questions investigated by research mathematicians!

Optimal Locations of Firehouses (Taxi-cab Metric)

By:


This session asks participants to expand their notion of “distance,” using a nontraditional taxicab metric instead of the usual Pythagorean notion. Participants are guided to construct the equivalent of “circles” with this new metric and to look at the intersections of multiple such circles. In particular, two firehouses in Gridtown are a certain distance apart and at specific addresses. What firehouse should serve a given house with a specified address? What areas of town should each firehouse serve? What if there were three firehouses? The focus of the session is on a deeper understanding of the coordinate system and notions...