## Activity Database

Search
Activity Authors
Activity Circles
Click To Sort By
Grade
Audience
• 1st - 2nd (11)
• 3rd - 5th (28)
• 6th - 8th (74)
• 9th - 12th (75)
• College Level (64)
• For Teachers (71)
Topics
Topics
• Algebra / Arithmetic (30)
• Combinatorics (29)
• Geometry (33)
• Mathematical Games (26)
• Mathematical Modeling (10)
• Number Theory (22)
• Parity / Invariants (2)
• Probability and Statistics (3)
• Problem Solving / General (36)
• Social Justice Mathematics (1)
Supporting Materials
Supporting Materials
• Facilitator Guides (88)
• Featured in MCircular (24)
• Handouts (28)
• Lesson Plan (6)
• Photos & Videos (24)
• References (29)
• Virtual Tools (12)
Session Styles
Session Styles
• Integrates Technology (12)
• Kinesthetic Element (10)
• Manipulatives (31)
• Multiple Representations (29)
• Problem Posing (42)
• Problem Sets (43)
• Try a Smaller Problem (35)
• Work Backwards (19)
Mathematical Practices
Mathematical Practices
• MP1 - Make sense of problems and persevere in solving them. (77)
• MP2 - Reason abstractly and quantitatively. (44)
• MP3 - Construct viable arguments and critique others' reasoning. (55)
• MP4 - Model with mathematics. (50)
• MP5 - Use appropriate tools strategically. (38)
• MP6 - Attend to precision. (34)
• MP7 - Look for and make use of structure. (63)
• MP8 - Look for and express regularity in repeated reasoning. (58)

### One, Two, Three, Four: Building Numbers with Four Operations

By:

Topic(s):

Supporting Resources:

What numbers can you make with 1, 2, 3, and 4, using the operations of addition, subtraction, and multiplication? Work on these problems builds arithmetic fluency and provides opportunities to identify patterns, develop and defend arguments, and create conjectures. This investigation also highlights how thin the boundary is between a...

### Shifting Gears: Approximations in Cycling

By:

Topic(s):

Supporting Resources:

After studying James Tanton’s MTC session about bicycle tracks, avid bicyclist Michael Nakamaye started questioning the mathematics behind how a bike works.

How do gears work? How many teeth are there usually on the different gears? Why? How is a bike like a ratio machine?