Activity Database

Search
Activity Authors
Activity Circles
Click To Sort By
Grade
Audience
  • 1st - 2nd (12)
  • 3rd - 5th (30)
  • 6th - 8th (83)
  • 9th - 12th (85)
  • College Level (72)
  • For Teachers (81)
Topics
Topics
  • Mathematical Modeling (15)
  • Number Theory (25)
  • Parity / Invariants (2)
  • Problem Solving / General (39)
  • Probability and Statistics (3)
  • Social Justice Mathematics (5)
  • Algebra / Arithmetic (33)
  • Combinatorics (31)
  • Geometry (36)
  • Mathematical Games (26)
Supporting Materials
Supporting Materials
  • Facilitator Guides (88)
  • Handouts (38)
  • Lesson Plan (10)
  • Photos & Videos (28)
  • References (36)
  • Virtual Tools (17)
Session Styles
Session Styles
  • Manipulatives (33)
  • Multiple Representations (33)
  • Problem Posing (45)
  • Problem Sets (51)
  • Try a Smaller Problem (40)
  • Work Backwards (21)
  • Integrates Technology (17)
  • Kinesthetic Element (11)
Mathematical Practices
Mathematical Practices
  • MP1 - Make sense of problems and persevere in solving them. (83)
  • MP2 - Reason abstractly and quantitatively. (53)
  • MP3 - Construct viable arguments and critique others' reasoning. (58)
  • MP4 - Model with mathematics. (58)
  • MP5 - Use appropriate tools strategically. (40)
  • MP6 - Attend to precision. (40)
  • MP7 - Look for and make use of structure. (72)
  • MP8 - Look for and express regularity in repeated reasoning. (61)

Intersection Math

By:


What is four times three? 12 you might say, but no longer! In a new type of math — intersection math— we will see that four times three is 18, two times two is 1, and that two times five is 10 (Hang on! That’s not new!) Let’s spend some fun time together remembering what it is like to figure things out for the first time, rekindle that joyous creative mathematical spark in each of us, and realise that we are each capable of ingenious and clever thinking. Let’s work out 1001 x 492 in intersection math together! The key...

Bicycle Math

By:


You are brought to a crime scene. You are told that a thief just made off with a bag full of diamonds, escaping on a bicycle. You come across a pair of bicycle tracks in the snow, no doubt made by the fleeing thief. But which way did the thief go? Just by looking at the shapes of the tracks, can you determine which way the thieving cyclist went: left to right or right to left?

Folding Perfect Thirds

By:


Imagine you’re packing for a trip, and you’re planning on bringing your favorite tie. It’s too long to fit in your suitcase, even after folding it in half. You would fold it into fourths, but you don’t want all of those creases ruining your tie. You’ve decided folding it into thirds will be the perfect length to fit in your suitcase without noticeable creases on your tie. However, you don’t have a ruler or any means of making sure your tie is folded into perfect thirds. Is there anything you can do about this?