Activity Database

Search
Activity Authors
Activity Circles
Click To Sort By
Grade
Audience
  • 1st - 2nd (4)
  • 3rd - 5th (10)
  • 6th - 8th (28)
  • 9th - 12th (32)
  • College Level (25)
  • For Teachers (28)
Topics
Topics
  • Problem Solving / General (13)
  • Probability and Statistics (1)
  • Algebra / Arithmetic (10)
  • Combinatorics (10)
  • Geometry (35)
  • Mathematical Games (3)
  • Mathematical Modeling (3)
  • Number Theory (4)
  • Parity / Invariants (1)
Supporting Materials
Supporting Materials
  • Facilitator Guides (32)
  • Handouts (15)
  • Lesson Plan (4)
  • Photos & Videos (12)
  • References (12)
  • Virtual Tools (8)
Session Styles
Session Styles
  • Work Backwards (5)
  • Integrates Technology (6)
  • Kinesthetic Element (6)
  • Manipulatives (13)
  • Multiple Representations (9)
  • Problem Posing (18)
  • Problem Sets (19)
  • Try a Smaller Problem (12)
Mathematical Practices
Mathematical Practices
  • MP1 - Make sense of problems and persevere in solving them. (28)
  • MP2 - Reason abstractly and quantitatively. (17)
  • MP3 - Construct viable arguments and critique others' reasoning. (18)
  • MP4 - Model with mathematics. (20)
  • MP5 - Use appropriate tools strategically. (17)
  • MP6 - Attend to precision. (15)
  • MP7 - Look for and make use of structure. (27)
  • MP8 - Look for and express regularity in repeated reasoning. (23)

Counterexamples

By:


What can you do with a paperclip? What can you do with a grid? Answers to these questions lead participants to explore their own conjectures. This professional development session will help everyone turn their classroom into a Thinking Classroom, where students use Conjectures and Counterexamples to power genuine mathematical experiences.

This session is suitable for all ages, math circles and classrooms.

Grid Power

By:


“When I grew up in the Soviet Union, all we used for math was grid paper. Grid paper leads to discovery.” This is how Tatiana Shubin, San Jose State University, begins her lesson demonstrating the myriad of wonderful math questions arising from a simple sheet of grid paper. Attempting to count all squares of any size on a limited grid will require participants to persevere, organize their thinking and construct viable arguments.