roles) || in_array('administrator', $user->roles) || in_array('admin', $user->roles ) ) { ?>
probname); ?>
Topic Classification: nid, "Topic Classification"); ?> Tags: nid, "Problem Tag");?>
Topics: nid, "Topics"); ?> Prerequisites: nid, "Prerequisites"); ?>
Supplies: nid, "Supplies"); ?> Pedagogy: nid, "Pedagogy"); ?>
Grade Vs Difficulty:
  EasyModerateChallengingPerplexing
1-2
3-4
5-6
7-8
 
9-10
 
11-12
 
 
13-14
 
 
Solution: nid, "Solution"); ?>
Problem

The arbelos consists of three points $A,B$ and $C$ which are collinear, together with the semicircles $ADB$, $AXC$ and $CYB$ as shown in Figure 1. In the figure $\overline {CD}$ has been added to the figure tangent to the two small semicircles. $\overline {AD}$ intersects a small semicircle at $X$ and $\overline{BD}$ intersects the other small semicircle at $Y$. $\overline{XY}$ intersects $\overline{AD}$ at $P$. Prove the area of the arbelos is equal to the area of the circle with diameter $\overline{CD}$, $\overline{XY}$ and $\overline{CD}$ bisect each other, and $\overline{XY}$ is tangent to the small semicircles.

Details
Source Title: BMC Talk
Authors
nid); while ($data = db_fetch_object($authorresult)) { $authorfirstname = $data->firstname; $authorlastname = $data->lastname; $authors = $authorfirstname . ' ' . $authorlastname; print $authors; ?>
References
nid); if (mysql_num_rows($refresult) > 0 ) { ?> nmcreferenceid; $referenceauthor = $data->author; $referencetitle = $data->title; $referenceurl = $data->url; ?> 0 ) { print '
Reference Author Reference Title Reference URL
'; } ?>
nid); $totalSets = mysql_num_rows($setsResult); if ($totalSets > 0) { ?>
Problem Sets This Problem Belongs to:
parent_nid; ?> Set:
VARIABLES
nid, 1); while ($data = db_fetch_object($variablesresult)) { $variable = $data->elementdata; ?> •


DEFINITIONS
nid); while ($data = db_fetch_object($defresult)) { $definitionid = $data->nmcdefinitionid; $definition = $data->definition; $definitionname = $data->definitionname; ?> •